Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Sci Rep ; 14(1): 9195, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649707

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Acorus , Antioxidants , Carum , Cymbopogon , Oils, Volatile , Plant Extracts , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Acorus/chemistry , Carum/chemistry , Gas Chromatography-Mass Spectrometry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology
2.
Heliyon ; 10(1): e23084, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38169772

Tetraclinis articulata is a known traditional medicinal plant used to manage various ailments, such as diabetes, rheumatism and infectious diseases. This study aims to determine the chemical constituents of T. articulata essential oil (EO) and to evaluate its in vitro antibacterial, anti-candidal, antioxidant, anti-inflammatory and dermatoprotective properties. In addition, a computational docking approach was used to predict the potential antioxidant, antibacterial, antifungal, anti-inflammatory, and cytotoxic properties of the identified compounds. The volatile oil obtained by hydrodistillation was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of T. articulata EO was investigated using three complementary assays: DPPH, ABTS and FRAP. Lipoxygenase (5-LOX) and tyrosinase enzymes were used to assess the anti-inflammatory and dermatoprotective effects of this oil. Moreover, disc-diffusion technique, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were employed for the antimicrobial screening. The GC-MS analysis revealed that bornyl acetate (41.80 %), α-pinene (17.97 %) and camphor (15.97 %) are the major components of the studied EO. Moreover, T. articulata EO has exhibited promising antioxidant effect on FRAP, DPPH, and ABTS experiments. It also significantly inhibited 5-LOX (IC50 = 67.82 ± 0.03 µg/mL) and tyrosinase (IC50 = 211.93 ± 0.02 µg/mL). The results of MIC and MBC assays indicated that T. articulata EO is able to inhibit the growth of all tested bacteria (Gram + and Gram -) and Candida species. The ratio of tolerance level indicated that the tested oil was bactericidal against the Gram + bacteria and Candida species, whereas it has a bacteriostatic behavior against the Gram- bacteria. In light of these findings, T. articulata EO may be suggested as a potential pharmaceutical agent to prevent inflammation and skin problems and may serve as a natural antimicrobial and antioxidant alternative for sustainable application in food products.

3.
Heliyon ; 9(9): e19814, 2023 Sep.
Article En | MEDLINE | ID: mdl-37809691

Sweet orange (Citrus × sinensis (L.) Osbeck), lentisk (Pistacia lentiscus L.) and lemon eucalyptus (Eucalyptus citriodora Hook) are medicinal plants known by its culinary virtues. Their volatile oils have demonstrated promising antimicrobial activity against a panel of microbial strains, including those implicated in food deterioration. In this exploratory investigation, we aimed to determine the antimicrobial formulation of sweet orange, lentisk and lemon eucalyptus essential oils (EOs) using the simplex-centroid mixture design approach coupled with a broth microdilution method. EOs were first extracted by hydrodistillation, and then their phytochemical profile was characterized using Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis identified d-limonene (14.27%), careen-3 (14.11%), ß-myrcene (12.53%) as main components of lentisk EOs, while lemon eucalyptus was dominated by citronellal (39.40%), ß-citronellol (16.39%) and 1,8-cineole (9.22%). For sweet orange EOs, d-limonene (87.22%) was the principal compound. The three EOs exhibited promising antimicrobial potential against various microorganisms. Lemon eucalyptus and sweet orange EO showed high activity against most tested microorganisms, while lentisk EO exerted important effect against some microbes but only moderate activity against others. The optimization formulations of antimicrobial potential showed interesting synergistic effects between three EOs. The best combinations predicted on C. albicans, S. aureus, E. coli, S. enterica and B. cereus correspond to 44%/55%/0%, 54%/16%/28%, 43%/22%/33%, 45%/17%/36% and 36%/30%/32% of Citrus sinensis, Pistacia lentiscus and Eucalyptus citriodora EOs, respectively. These findings suggest that the combination of EOs could be used as natural food preservatives and antimicrobial agents. However, further studies are needed to determine the mechanisms of action and efficacy of these EOs against different microorganisms.

4.
Front Biosci (Landmark Ed) ; 28(9): 229, 2023 09 27.
Article En | MEDLINE | ID: mdl-37796709

BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities. METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities. RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL). CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.


Oils, Volatile , Pistacia , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Limonene/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Glucosidases , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , alpha-Amylases
5.
Biomed Pharmacother ; 167: 115609, 2023 Nov.
Article En | MEDLINE | ID: mdl-37801906

Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), ß-pinene (4.36%), ß-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.


Cupressus , Oils, Volatile , Bacillus subtilis , Pseudomonas aeruginosa , Cupressus/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Microbial Sensitivity Tests
6.
Molecules ; 28(15)2023 Aug 06.
Article En | MEDLINE | ID: mdl-37570883

Cedrus atlantica (Endl.) Manetti ex Carriere is an endemic tree possessing valuable health benefits which has been widely used since time immemorial in international traditional pharmacopoeia. The aim of this exploratory investigation is to determine the volatile compounds of C. atlantica essential oils (CAEOs) and to examine their in vitro antimicrobial, antioxidant, anti-inflammatory, and dermatoprotective properties. In silico simulations, including molecular docking and pharmacokinetics absorption, distribution, metabolism, excretion, and toxicity (ADMET), and drug-likeness prediction were used to reveal the processes underlying in vitro biological properties. Gas chromatography-mass spectrophotometry (GC-MS) was used for the chemical screening of CAEO. The antioxidant activity of CAEO was investigated using four in vitro complementary techniques, including ABTS and DPPH radicals scavenging activity, ferric reductive power, and inhibition of lipid peroxidation (ß-carotene test). Lipoxygenase (5-LOX) inhibition and tyrosinase inhibitory assays were used for testing the anti-inflammatory and dermatoprotective properties. GC-MS analysis indicated that the main components of CAEO are ß-himachalene (28.99%), α-himachalene (14.43%), and longifolene (12.2%). An in vitro antimicrobial activity of CAEO was examined against eleven strains of Gram-positive bacteria (three strains), Gram-negative bacteria (four strains), and fungi (four strains). The results demonstrated high antibacterial and antifungal activity against ten of them (>15 mm zone of inhibition) using the disc-diffusion assay. The microdilution test showed that the lowest values of MIC and MBC were recorded with the Gram-positive bacteria in particular, which ranged from 0.0625 to 0.25 % v/v for MIC and from 0.5 to 0.125 % v/v for MBC. The MIC and MFC of the fungal strains ranged from 0.5 to 4.0% (MIC) and 0.5 to 8.0% v/v (MFC). According to the MBC/MIC and MFC/MIC ratios, CAEO has bactericidal and fungicidal activity. The results of the in vitro antioxidant assays revealed that CAEO possesses remarkable antioxidant activity. The inhibitory effects on 5-LOX and tyrosinase enzymes was also significant (p < 0.05). ADMET investigation suggests that the main compounds of CAEO possess favorable pharmacokinetic properties. These findings provide scientific validation of the traditional uses of this plant and suggest its potential application as natural drugs.


Anti-Infective Agents , Oils, Volatile , Oils, Volatile/chemistry , Antioxidants/chemistry , Cedrus , Monophenol Monooxygenase/pharmacology , Molecular Docking Simulation , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Fungi , Gram-Positive Bacteria , Anti-Inflammatory Agents/pharmacology
7.
Biomed Pharmacother ; 164: 114937, 2023 Aug.
Article En | MEDLINE | ID: mdl-37267633

Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and ß-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p < 0.05). It also exerted remarkable activity on FRAP, ß-carotene, and DPPH radicals. These findings demonstrated that the tested plants have promising biological activities, validating their ethnomedicinal value and providing potential applications as natural drugs.


Ammi , Anti-Infective Agents , Lavandula , Mentha , Oils, Volatile , Plants, Medicinal , Antioxidants/pharmacology , Antioxidants/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lavandula/chemistry , Hypoglycemic Agents/pharmacology , beta Carotene , alpha-Glucosidases , Anti-Infective Agents/pharmacology , Phytochemicals
8.
J Pharmacopuncture ; 26(1): 27-37, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-37007296

Objectives: Moroccan Arbutus unedo is an essential medicinal plant; however, little is known about the biological properties of its leaves mentioned in Moroccan traditional medicine. Methods: Various standard experiments were performed to evaluate the phytochemical, antidiabetic, antioxidant, antibacterial, and acute and sub-chronic toxicity characteristics of A. unedo leaves. Results: Phytochemical screening led to the identification of several phytochemical classes, including tannins, flavonoids, terpenoids, and anthraquinones, with high concentrations of polyphenols (31.83 ± 0.29 mg GAEs/g extract) and flavonoids (16.66 ± 1.47 mg REs/g extract). Further, the mineral analysis revealed high levels of calcium and potassium. A. unedo extract demonstrated significant antioxidant and anti-diabetic activities by inhibiting α-amylase (1.350 ± 0.32 g/mL) and α-glucosidase (0.099 ± 1.21 g/mL) compared to the reference drug Acarbose. Also, the methanolic extract of the plant exhibited significantly higher antibacterial activity than the aqueous extract. Precisely, three of the four examined bacterial strains exhibited substantial susceptibility to the methanolic extract . Minimum bactericidal concentration (MBC)/minimum inhibitory concentration (MIC) values indicated that A. unedo harbor abundant bactericidal compounds. For toxicological studies, mice were administered with A. unedo aqueous extract at single doses of 2,000 and 5,000 mg/kg. They did not exhibit significant abnormal behavior, toxic symptoms, or death during the 14-day acute toxicity test and the 90-day sub-chronic toxicity test periods. The general behavior, body weight, and hematological and biochemical status of the rats were assessed, revealing no toxicological symptoms or clinically significant changes in biological markers observed in the mice models, except hypoglycemia, after 90 days of daily dose administration. Conclusion: The study highlighted several biological advantages of A. unedo leaves without toxic effects in short-term application. Our findings suggest that conducting more comprehensive and extensive in vivo investigations is of utmost importance to identify molecules that can be formulated into pharmaceuticals in the future.

9.
Article En | MEDLINE | ID: mdl-36767104

This study aimed to examine the association between physical activity (PA), body composition, and metabolic disorders in a population of Moroccan women classified by menopausal status. This cross-sectional study comprised 373 peri- and postmenopausal women aged 45-64 years old. PA levels were assessed using the short version of the International Physical Activity Questionnaire (IPAQ-SF). Body composition and metabolic disorders were assessed by measurements of anthropometric and biological parameters: weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), WC/HC ratio, percent body fat, systolic and diastolic blood pressure, fasting blood glucose, and serum lipids (total cholesterol (TC), triglycerides (TG), HDL-C, and LDL-C). Metabolic syndrome (MetS) was diagnosed according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria. Pearson correlations were used to test for associations. The mean total PA score of perimenopausal women was 1683.51 ± 805.36 MET-min/week, and of postmenopausal women was 1450.81 ± 780.67 MET-min/week. In all participants, peri- and postmenopausal women, PA was significantly and inversely associated with BMI, weight, percent body fat, HC, WC, and number of MetS components (p < 0.01), and with fasting blood glucose, TC, TG, and LDL-C (p < 0.05). The frequencies of metabolic disorders, obesity, abdominal obesity, type 2 diabetes, dyslipidemia, and MetS were significantly lower at moderate and intense levels of PA (p < 0.05), in also all participants. In middle-aged women, particularly those who are peri-menopausal, PA at moderate and intense levels is associated with more favorable body composition and less frequent metabolic disorders. However, in this particular study, PA does not appear to be associated with blood pressure and HDL-C concentrations. Future studies may be needed to further clarify these findings.


Diabetes Mellitus, Type 2 , Metabolic Syndrome , Adult , Middle Aged , Humans , Female , Risk Factors , Blood Glucose , Cross-Sectional Studies , Cholesterol, LDL , Morocco , Obesity , Waist Circumference , Body Composition , Triglycerides , Body Mass Index , Exercise/physiology
10.
Molecules ; 28(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36677672

This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 µg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 µg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 µg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 µg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.


Ocimum basilicum , Oils, Volatile , Ocimum basilicum/chemistry , Monophenol Monooxygenase , alpha-Glucosidases , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Lipoxygenases
11.
Curr Pharm Des ; 29(6): 407-414, 2023.
Article En | MEDLINE | ID: mdl-36567304

Myrtenol (C10H16O) is a volatile compound belonging to the terpenoid family of monocyclic monoterpenes. It is one of the essential oils constituents of several aromatic plants, including the genera Myrtus, Tanacetum, Artemisia, Hyssopus, and Rhodiola. The oxidation of α-pinene can produce it. Several reports demonstrated the pharmacological properties of myrtenol, including its antioxidant, antibacterial, antifungal, antidiabetic, anxiolytic, and gastroprotective activities. In this review, we discussed and highlighted in depth the pharmacological activities, cellular and molecular, providing insight into the mechanisms of myrtenol. In light of this finding, the interesting biological activities and abundance of myrtenol in nature suggests its potential applications in medicinal settings in the fight against various diseases.


Oils, Volatile , Plant Extracts , Humans , Plant Extracts/pharmacology , Oils, Volatile/pharmacology , Monoterpenes/pharmacology , Antioxidants/pharmacology
12.
Life (Basel) ; 12(11)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36431011

The objectives of this work were to determine the phytochemical composition and antioxidant, anti-diabetic, antibacterial, anti-inflammatory, and anti-acetylcholinesterase properties of Arbutus unedo L. and Laurus nobilis L. EOs. The antioxidant effects were estimated using four complementary methods. In addition, the anti-diabetic activity was assessed by targeting three carbohydrate-hydrolyzing enzymes, namely α-amylase, α-glucosidase, and lipase. The anti-inflammatory and anti-acetylcholinesterase effects were evaluated by testing the inhibitory potential of both plants on lipo-oxygenase and acetylcholinesterase (AChE), respectively. The antimicrobial activity of these oils was evaluated using disc-diffusion, minimum inhibitory concentration (MIC), and minimum lethal concentration (MLC) tests. The chemical composition of L. nobilis essential oil (EO) was dominated by eucalyptol (36.40%), followed by α-terpineole (13.05%), α-terpinyl acetate (10.61%), linalool (10.34%), and northujane (5.74%). The main volatile compounds of A. unedo EOs were decenal (13.47%), α-terpineol (7.8%), and palmitic acid (6.00%). L. nobilis and A. unedo EOs inhibited α-amylase with IC50 values of 42.51 ± 0.012 and 102 ± 0.06 µg/mL, respectively. Moreover, both oils inhibited the activity of α-glucosidase (IC50 = 1.347 ± 0.021 µg/mL and IC50 = 76 ± 0.021 µg/mL) and lipase (IC50 = 21.23 ± 0.021 µg/mL and IC50 = 97.018 ± 0.012 µg/mL, respectively). In addition, L. nobilis EO showed an anti-AChE activity (IC50 = 89.44 ± 0.07 µg/mL) higher than that of A. unedo EO (IC50 = 378.57 ± 0.05 µg/mL). Regarding anti-inflammatory activity, in vitro assays showed that L. nobilis significantly inhibits (IC50 = 48.31 ± 0.07 µg/mL) 5-lipoxygenase compared to A. unedo (IC50 = 86.14 ± 0.05 µg/mL). This was confirmed in vivo via a notable inhibition of inflammation recorded after 6 h of treatment in both plants at a dose of 50 mg/kg. The microbiological results revealed that EOs from both plants inhibited the growth of all tested organisms except P. aeruginosa, with the highest antimicrobial effect for L. nobilis. The results of these tests showed that these two plants possess remarkable biological and pharmacological properties, explaining their medicinal effects and suggesting them as promising sources of natural drugs.

13.
Molecules ; 27(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36364152

The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 µg/mL and 41.83 ± 0.01 µg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.


Oils, Volatile , Origanum , Mice , Animals , Origanum/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Thymol , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology
14.
Foods ; 11(21)2022 Nov 01.
Article En | MEDLINE | ID: mdl-36360079

The objective of this work is to explore the phytochemical profile of Mentha piperita essential oils (MPEO) collected from two different Moroccan regions using gas chromatography-mass spectrophotometer (GC-MS) and to investigate their antioxidant, anti-inflammatory, antidiabetic and, antimicrobial effects using in vivo and in vitro assays. The chemical constituent of MPEO from the Azrou zone is dominated by carvone (70.25%), while MPEO from the Ouazzane zone is rich in Menthol (43.32%) and Menthone (29.4%). MPEO from Ouezzane showed higher antioxidant activity than EO from Azrou. Nevertheless, EO from Ouezzane considerably inhibited 5-Lipoxygenase (IC50 = 11.64 ± 0.02 µg/mL) compared to EO from Azro (IC50 = 23.84 ± 0.03 µg/mL). Both EOs from Azrou and Ouazzane inhibited the α-amylase activity in vitro, with IC50 values of 131.62 ± 0.01 µg/mL and 91.64 ± 0.03 µg/mL, respectively. The EOs were also tested for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The discdiffusion test revealed that MPEOs from both regions have significant antibacterial efficacy, and MPEOs from the north region showed the highest effect. The gram-positive bacteria were the most susceptible organisms. The MIC concentrations were in the range of 0.05 to 6.25 mg/mL, and the MBC concentrations were within 0.05-25.0 mg/mL. The MBC/MIC index indicated that MPEO has strong bactericidal effects.

15.
Toxins (Basel) ; 14(11)2022 10 27.
Article En | MEDLINE | ID: mdl-36355985

The present study aimed to evaluate the acute and subacute toxicity profiles of Erodium guttatum extracts in mice using the methods described in the guidelines of the OECD. In the acute toxicity study, the LD50 value was greater than 2000 mg/kg. The subacute toxicity study of E. guttatum extracts showed no significant changes in body or organ weights. The administration of E. guttatum extracts to mice at a dose of 200 mg/kg led to an increase in white blood cells, platelets and hemoglobin. Moreover, the aqueous extract of E. guttatum only decreased liver aspartate aminotransferase (ASAT) levels at a dose of 200 mg/kg, and creatinine and urea levels did not show any significant alterations compared to the control group. Our results showed that the extracts of E. guttatum caused a slight increase in alanine aminotransferase (ALAT) and triglycerides. The histological study showed that mice treated with E. guttatum extracts experienced some histopathological changes in the liver, particularly with the methanolic extract, and slight changes in the kidneys and pancreas. Regarding the renal profile, no toxicity was observed. These results provide basic information on the toxicological profile of E. guttatum used in traditional medicine.


Plant Extracts , Rodentia , Animals , Mice , Toxicity Tests, Acute , Plant Extracts/toxicity , Lethal Dose 50 , Administration, Oral
16.
Oxid Med Cell Longev ; 2022: 4229981, 2022.
Article En | MEDLINE | ID: mdl-36193070

Erodium guttatum is widely used in folk medicine in many countries to treat various ailments such as urinary inflammation, diabetes, constipation, and eczema. The aim of this study is the determination of mineral and phenolic compounds of E. guttatum extracts as well as the investigation of their antidiabetic and antioxidant properties. The mineral composition was determined by the methods of inductively coupled plasma atomic emission spectroscopy analysis. Phytochemical contents of total polyphenols, total flavonoids, and catechic tannins were estimated by colorimetric dosages. The phenolic composition was identified by high-resolution mass spectrometry (HRMS) analysis. The antioxidant activity of E. guttatum extracts was measured in vitro by five methods (DPPH, ABTS, FRAP, H2O2, and xanthine oxidase) and in vivo by assaying the malondialdehyde marker (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The obtained results showed that the root plant material is rich in minerals such as k, Ca, and Mg. The methanolic extract of E. guttatum is the richest in polyphenols (389.20 ± 1.55 mg EAG/gE), tannins (289.70 ± 3.57 mg EC/gE), and flavonoids (432.5 ± 3.21 mg ER/gE). Concerning the ESI-HRMS analysis, it showed the presence of numerous bioactive compounds, including shikimic acid, rottlerine, gallic acid, and vanillic acid. Moreover, the aqueous and alcoholic extracts of E. guttatum exhibited antiradical and antioxidant activity in five tests used, with the best effect of the methanolic extract. Moreover, findings showed that in vivo investigations confirmed those obtained in vitro. On the other hand, E. guttatum showed important antidiabetic effects in vivo. Indeed, diabetic mice treated with extracts of E. guttatum were able to significantly reduce MDA levels and increase the secretion of enzymatic and nonenzymatic antioxidants (SOD, CAT, and GSH, respectively). However, the antioxidant activity of the extracts might be attributed to the abundance of bioactive molecules; as results, this work serves as a foundation for additional pharmacological research.


Antioxidants , Diabetes Mellitus, Experimental , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Catalase , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/therapeutic use , Gallic Acid , Glutathione , Hydrogen Peroxide , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Malondialdehyde , Mice , Minerals , Phenols/analysis , Phenols/pharmacology , Phytochemicals , Plant Extracts/chemistry , Polyphenols/pharmacology , Polyphenols/therapeutic use , Shikimic Acid , Superoxide Dismutase , Tannins/pharmacology , Vanillic Acid , Xanthine Oxidase
17.
J Pharmacopuncture ; 25(3): 242-249, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-36186088

Objectives: The aim of this work is to evaluate the in vitro antioxidant, hypoglycemic, and antiobesity effects of Euphorbia resinifera extracts and investigate the phenolic constituents and the toxicity of these extracts. Methods: Phytochemical screening was performed to detect polyphenols and flavonoids. Antioxidant activity was evaluated by four methods (DPPH, ABTS, H2O2, and xanthine oxidase inhibition). The hypoglycemic effect was determined by the inhibition of α-amylase and α-glucosidase enzymes in vitro and via a starch tolerance study in normal rats. The antiobesity effect was estimated by in vitro inhibition of lipase. Results: Phytochemical screening revealed that the ethanolic extract was rich in polyphenols (99 ± 0.56 mg GEA/g extract) and tannins (55.22 ± 0.17 mg RE/g extract). Moreover, this extract showed higher antioxidant activity in different tests the DPPH assay (IC50 = 53.81 ± 1.83 µg/mL), ABTS assay (111.4 ± 2.64 mg TE/g extract), H2O2 (IC50 = 98.15 ± 0.68 µg/mL), and xanthine oxidase (IC50 = 10.26 ± 0.6 µg/mL). With respect to hypoglycemic effect, the aqueous and ethanolic extracts showed IC50 values of 119.7 ± 2.15 µg/mL and 102 ± 3.63 µg/mL for α-amylase and 121.4 ± 1.88 and 56.6 ± 1.12 µg/mL for α-glucosidase, respectively, and the extracts lowered blood glucose levels in normal starch-loaded rats. Additionally, lipase inhibition was observed with aqueous (IC50 = 25.3 ± 1.53 µg/mL) and ethanolic (IC50 = 13.7 ± 3.03 µg/mL) extracts. Conclusion: These findings show the antioxidant, hypoglycemic, and hyperlipidemic effects of E. resinifera extracts, which should be investigated further to validate their medicinal uses and their pharmaceutical applications.

18.
Plants (Basel) ; 11(17)2022 Aug 27.
Article En | MEDLINE | ID: mdl-36079608

The aim of this work was the determination of Pelargonium graveolens (aerial parts) volatile compounds at three developmental stages and the evaluation of their antioxidant, antidiabetic, dermaprotective, anti-inflammatory, and antibacterial effects. The aerial parts of Pelargonium graveolens were collected at three stages, namely the vegetative, beginning, and full flowering. Pelargonium graveolens essential oils were extracted from the dried materials of these aerial parts by hydrodistillation. The volatiles were analyzed by Gas Chromatography-Mass Spectrometry GC-MS, and the antioxidant activity was assessed by DPPH, ABTS, H2O2, and FRAP assays. The in vitro antidiabetic effect was evaluated by the inhibition of α-amylase, α-glucosidase, and lipase enzymes, while the antibacterial activity was assessed against six bacterial strains using an agar well diffusion assay and a microdilution method. The main constituents were menthol, menthene, eremophilene, isoborneol, isogeraniol, α-pinene, linalyl acetate, and 3-carene, with quantitative differences at the three phenological stages. The essential oil at the full flowering stage showed the best antioxidant activity, with IC50 values of 83.26 ± 0.01, 116.42 ± 0.07, 132.25 ± 0.11, and 48.67 ± 0.04 µg/mL for DPPH, FRAP, ABTS, and H2O2 assays, respectively. This oil also exhibited significant effects against α-amylase (IC50 = 43.33 ± 0.01 µg/mL), α-glucosidase (IC50 = 19.04 ± 0.01 µg/mL), lipase (IC50 = 24.33 ± 0.05 µg/mL), 5-lipoxygenase (IC50 = 39.31 ± 0.01 µg/mL), and tyrosinase (IC50 = 124.49 ± 0.07 µg/mL). The essential oil extracted at the full flowering stage showed the best antibacterial effect against a panel of microorganisms with diameter inhibition zones ranging between 11.00 ± 0.17 mm and 17.30 ± 0.17 mm and MIC values from 0.25% to 2% v/v. Overall, the results presented here suggest that the full flowering stage is the best optimal harvest time of Pelargonium graveolens for food and pharmaceutical applications.

19.
Molecules ; 27(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36144586

This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography-mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and ß-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), ß-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 µg/mL) and α-amylase (121.44 ± 0.05 µg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.


Anti-Infective Agents , Honey , Matricaria , Oils, Volatile , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Camphor , Carrageenan , Free Radicals , Hypoglycemic Agents , Lipoxygenases , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , alpha-Amylases , alpha-Glucosidases , beta Carotene
20.
Adv Pharmacol Pharm Sci ; 2022: 2844880, 2022.
Article En | MEDLINE | ID: mdl-35755940

This work evaluated in vitro antioxidant, antidiabetic, and antibacterial properties of Salvia officinalis (S. officinalis) and Mentha suaveolens (M. suaveolens) essential oils (EO). The EOs were extracted, and their chemical composition was determined using GC-MS analysis. The in vitro antioxidant, antidiabetic, and antibacterial activities of S. officinalis and M. suaveolens EO were shown to be remarkable. Furthermore, S. officinalis EO demonstrated better antioxidant findings (using DPPH, ABTS, and FRAP test) than M. suaveolens EO (p < 0.5). There were no significant differences in the inhibitory effects of the EOs on α-amylase and α-glucosidase activities in the antidiabetic assays. All of the examined bacterial strains (10 different strains), with the exception of P. aeruginosa, demonstrated significant sensitivity to the tested EOs, with M. suaveolens EO exhibiting better activity than S. officinalis EO. Thus, the research indicated that EO from these two medicinal plants has considerable potential for application in the formulation of antibacterial, antioxidant, and antidiabetic pharmaceuticals. However, more research studies are required to interpret the pharmacologic action of the studied EOs and their principal constituents and to confirm their safety.

...